
Action Arcade Adventure Set

Author's note: This chapter from AAAS is being posted with the publisher's permission on the Internet on
ftp.accessnv.com. This chapter covers the basic concepts of tile-based scrolling in Mode X. Originally, this
chapter was written in Word for Windows 6.0. I converted it to Windows Write format because it is a more
universal standard. Unfortunately, the figures are missing. The pictures were drawn at another location
and inserted into the book during typesetting. I am afraid this chapter is a bit easier to understand if you
can see the diagrams of how video memory is resized and used. You may want to try to reconstruct the
pictures from the descriptions.

I hope you enjoy this chapter from Action Arcade Adventure Set. If you have questions, you can reach me
at 72000,1642@compuserve.com or FASTGRAPH@AOL.COM.

Diana Gruber
March 10, 1995.

Chapter 5: The Magic of Side Scrolling

<deck>What's a side-scrolling game without scrolling? Take a look at this chapter to see
how reshaping video memory allows for lightning-fast smooth scrolling.

[1] The Importance of Scrolling
[1] Preparing to Scroll

[2] Shaping Video Memory
[1] Moving Beyond the Limits of Video Memory

[2] Using Hidden and Visual Pages
[2] Horizontal Scrolling
[2] Tile Space
[2] The Tile Area
[2] The Level Map
[2] Vertical Scrolling

[1] Getting a Clear Picture

When my husband Ted first suggested we buy a personal computer for our home, I was
skeptical. Men can be so impractical! I was not thrilled with the idea of throwing away
money on another toy. Why spend money on a computer when we could use the money

Action Arcade Adventure Set Chapter 5 1

for more important things like clothes or a vacation? Ted finally convinced me be saying
he would use it to write programs and make money to pay for it all. We picked out an AT
and within a few weeks I was nagging him to do something useful with it.

Ted's first attempt at graphics programming in BASIC was silly--he mastered
launching pixel projectiles in a CGA mode. I wanted nothing to do with it. After all, I had
outgrown BASIC months earlier and was now programming in Fortran. Ted's next
attempt was a bit more dignified. He used assembly language to set an EGA video mode
and draw a pixel. His pixel quickly became a line and then a rectangle. Within a few
weeks, he had functions for supporting text, bitmaps, and keyboard control. Now I was
getting interested.

"You should write a video poker game," Ted said, and I did. A programming
partnership was born. Ted continued to supply me with low-level graphics functions, and
I continued to write games to test them out. Sometimes I would get ahead of him and ask
for more functions, like video-to-video blits. Other times, Ted passed me by and then I
would be hard-pressed to think up a new game to use his discoveries.

One day, Ted discovered how to resize video memory in Mode X. This was pure power. I
didn’t know how to use this feature at first even though it was certainly something to brag
about. That's the problem with great inventions. Unless you can find a practical
application, it is just another quirk in the system, interesting only to computer nerds.
Eventually, though, I found an application for Ted’s discovery. As other gamers before me
had learned, it is just the perfect thing to use in a tile-based scrolling game. We are about
to examine the theory behind the scrolling, and the basis of this technique is Ted's
resizeable video memory in Mode X.

[1] The Importance of Scrolling
Scrolling is a fundamental part of the game we’ll be working on in the later chapters. I'm
introducing it now because we’ll also be using it in the game editor.

The next development tool we’ll discuss is a level editor. We'll use the level editor to
build and modify levels. Of course, the level editor must be able to scroll the entire level
if it's going to be useful to us. To understand the level editor, we must first understand the
the theory behind tile-based scrolling. The scrolling code that I'll be presenting in this
chapter is from the LEVEL.C source file used to build the game editor. Although we'll be
exploring this file in detail in the next chapter, we'll look at some of the scrolling code in
this chapter so that you can see how the scrolling concepts are implemented. If some of
the material confuses you a little, don't worry, it will become clearer as we dissect the
level editor in the next chapter.

The type of scrolling used in the level editor is slightly less complicated than the scrolling

Action Arcade Adventure Set Chapter 5 2

used in the game itself. For example, we don't need to perform diagonal scrolling. We
also don't need to scroll in one-pixel increments, although we can. All we’ll need for the
level editor is simple two-directional scrolling. So this is a good place to start. When we
are ready to do the game scrolling in Chapter 11, we’ll add more features to the scrolling
technique we are introducing now.

[1] Preparing to Scroll
The first thing we need to do to scroll our level art is initialize the video mode. This is the
same wonderful Mode X video mode we discussed in the previous chapter. But now we
are going to do something new with it. We are going to resize it. Mode X allows for four
pages of video memory on any VGA card, only don't think of it in that way. Rather than
four pages of video memory, try to think of it as one continuous block of video memory.
We'll take control of this video memory and reshape it to suit our needs. The way we do
this is by initializing video memory and calling a few Fastgraph functions as shown here:

fg_setmode(20);
fg_resize(352,744);

Notice that we first set the video mode to Mode X by calling the Fastgraph fg_setmode()
function thatwe introduced this function in Chapter 4. Then we call fg_resize().

fg_resize()
The fg_resize() function changes the dimensions of a video page in EGA, VGA, and
SVGA graphics modes.

void fg_resize(int width, int height);
width specifies the new video page width in pixels.

height specifies the new video page height in pixels.

The call to fg_resize() creates a big block of video memory that is 352 pixels wide and
744 pixels high, as shown in Figure 5.1. Video memory has now been resized to a single
large rectangle. Inside is the part of video memory that represents the screen--a smaller
(320x200 pixels) visible rectangle, also shown in Figure 5.1. The visible rectangle can be
located anywhere within the larger rectangle.

Figure 5.1 Resizing video memory to one big rectangle.

Action Arcade Adventure Set Chapter 5 3

[2] Shaping Video Memory
We can divide up video memory any way we want, and how we use this video memory is
going to be critical to both our game editor and the actual game we develop later in this
book. Let's examine the thought process that goes into designing the use of video
memory.

Think of yourself as a mathematician or an engineer. Get out a piece of graph paper, a
ruler, and a calculator. Now ask yourself, "What is the optimal use of this big chunk of
video memory?”

Let's start by assigning an area for the visible screen to reside. We need to find a good
place to put it, and leave enough room for it so that nothing else gets in its way. We have
already decided we are going to need tiles in our game. Experience has shown 16x16 tiles
are a good size. On a regular 320x200 screen, you have enough room to fit 20 of them in
the horizontal direction, and 12-1/2 in the vertical direction. Hmmm... 12-1/2? That is
going to present a problem. We are going to have some overlap in the vertical direction.
Better plan a space on your paper that is at least half a tile longer than 200 lines. So the
height of our page needs to be at least 208 lines. But is this enough? What if we want to
scroll up and down in one-pixel increments? We better leave enough room for a tile at the
top and a tile at the bottom. So our page height is going to be 15 tiles high, with 12-1/2
tiles visible at any one time. We'll also have a couple of extra rows of tiles to give us
some room to scroll around in. The formula works out like this:

 12.5 rows of tiles always visible, round up to 13
+ an extra row of tiles at the top to scroll up + 1
+ an extra row of tiles at the bottom to scroll down + 1

 total rows of tiles: 15
 sixteen rows of pixels per tile x16

 total height of our page in pixels 240

Therefore, the size of the page we will have to rebuild each frame is 240 pixels; we'll
reserve an area this size at the top of our rectangle of video memory and call it page 0, as
shown in Figure 5.2.

Figure 5.2 240 rows of pixels reserved in video memory.

The top area will always be a page. We won't use that part of video memory for anything
else. The actual visible screen will fit somewhere in this page and will float around as

Action Arcade Adventure Set Chapter 5 4

required by the scrolling. We will begin by putting the visible screen right in the middle,
at x = 16, y = 16, as shown in Figure 5.3.

Figure 5.3 The visible screen is located in page 0.

The visible screen is 320x200 pixels and can be located anywhere inside of page 0. It
floats easily in this area. All we need is a single call to Fastgraph’s fg_pan() function:

fg_pan(screen_orgx, screen_orgy);

fg_pan()
The fg_pan() function changes the screen origin (the upper-left corner of the screen) to
the specified screen space coordinates.

void fg_pan(int ix, int iy);
ix is the new screen space x coordinate for the screen origin.

iy is the new screen space y coordinate for the screen origin.

We've introduced two variables here called screen_orgx and screen_orgy. These
variables represent the (x,y) coordinates of the origin of the screen in video memory.
Since we'll need to refer to them often, we'll make them global variables and declare
them like this:

int screen_orgx, screen_orgy;

We begin with screen_orgx = 16 and screen_orgy = 16, as shown in Figure 5.3.
Throughout our discussion, we'll assume that screen_orgx and screen_orgy are
constrained to the following values:

0 <= screen_orgx < 32
0 <= screen_orgy < 40

If screen_orgx is greater than 31, or screen_orgy is greater than 39, our visible screen
will overflow the space we allocated for the page, and we’ll see garbage around the edges
of the screen. You don't want that to happen! Allowing the visible screen to overflow the
edges of the page is like taking a trip into the Twilight Zone. You never quite know what

Action Arcade Adventure Set Chapter 5 5

will appear over the horizon. It is an experience best avoided. So we will limit the origin
of our visible page to a small area, called the panning area, as shown in Figure 5.4.

Figure 5.4 Page 0 panning limits.

Notice that screen_orgx and screen_orgy must be less than 32 and 40, respectively. That
is, they can have a maximum value of 31 and 39. The reason is obvious: We start
counting pixels at 0, so the range from 0 to 31 is 32 pixels, or exactly two tiles.

By now, it should also be obvious why we chose the value 352 as the width of our video
memory rectangle. The visible screen is 320 pixels across, which is 20 tiles. We need to
leave room for one tile on the left for scrolling left, and another tile on the right for
scrolling to the right, so our page needs to be 22 tiles wide; 22 tiles times 16 pixels per
tile is 352.

[1] Moving Beyond the Limits of Video Memory
Is one tile all around the edge of the screen all the scrolling room we need? Most
scrolling games allow us to move more than 16 pixels in any direction. But what is going
to happen to us when we try to move the screen out of the panning area? The answer is,
we will need to redraw the screen with new tiles on it. For best results, we'll want to draw
the new screen in offscreen video memory. This is going to take some more room. In fact,
we're going to need another whole page. Let's put it underneath the first page, and call it
page 1, as shown in Figure 5.5.

Figure 5.5 Page 1, located beneath page 0.

Notice that page 1 is exactly the same size and shape as page 0. Now that we have two
pages, we can alternate between them, in a technique known as page flipping. Our
version of page flipping might be a little different than the page flipping you may be
familiar with. Physically, video memory is all the same page. All we are doing is moving
from one area of video memory to another using fg_pan(). But at this low level, there is
really no difference between our technique and conventional page flipping. Both involve
changing the starting address of display memory. Resizing video memory to one page
simply gives us a little more control over the process. In addition to flipping from one
page to the other, we can also control just where on the page we flip to.

Page 1 gives us the panning area shown in Figure 5.6.

Action Arcade Adventure Set Chapter 5 6

Figure 5.6 Page 1 panning limits.

If the visible screen is at (16,16) on page 0, the same screen will be at (16,256) on page 1.
In other words, page 1 is just page 0 with 240 added to the y coordinate.

To simplify things, we will define a variable called yoffset. This variable will be equal to
either 0 or 240 depending on whether we are currently displaying page 0 or page 1. Every
time we flip pages, all we have to do is change the value of yoffset, as shown in Figure
5.7.

Figure 5.7 Change the value of yoffset when flipping pages.

In our game, we will flip pages quite often--usually between 10-25 frames per second. In
fact, we will define one frame of animation to mean a sequence ending in a page flip.
Every time we flip pages, we will move the visible screen from page 0 to page 1, or vice
versa. We will do this by updating the value of yoffset, and then calling fg_pan():

yoffset = 240 - yoffset;
fg_pan(screen_orgx,screen_orgy+yoffset);

This function performs a very fast update of the screen (approximately as fast as the rate
of the vertical refresh).

Toggling a Variable
To toggle a variable between two numbers, subtract the current value of the variable from
the sum of the numbers. For example, if you want to toggle x between 0 and 1, you could
write this code

if (x == 0)
 x = 1;
else
 x = 0;

which has exactly the same effect as this much shorter bit of code:

x = 1-x;

[2] Using Hidden and Visual Pages
Action Arcade Adventure Set Chapter 5 7

At this point, let's introduce the concept of the hidden and visual pages. The page that is
currently hosting the screen is called the visual page. The other page is the hidden page.
In our game, page 0 and page 1 will be constantly alternating roles (10-25 times per
second, as I said earlier). Screen updates are always done to the hidden page, then the
pages are flipped, and the hidden page becomes the visual page. We then immediately
update the new hidden page in anticipation of the next page flip. These updates and page
flips continue as long as the program is running. Even when the program appears to be
doing nothing (for example when all our sprites are standing perfectly still), we are still
flipping pages at approximately 25 frames per second.

In the level editor, scrolling works slightly different. We do not need to animate at the
same high speed as in the game, so we will not be constantly flipping pages; we only
need to flip a page when the level has scrolled out of the viewing area.

As we work through the scrolling code, we will find it convenient to keep track of a little
more information. The swap() function updates all the variables that define the hidden
and visual pages. The vpo (visual page offset) variable is the same as yoffset. Knowing
the bottom of the visual page, as well as the top and the bottom of the hidden page, will
be useful to us later. We could always calculate these values "on the fly," but since we
will be using them several times per frame and we are interested in saving time, we will
compute them once in the swap() function and store them in globals. Then we can have
access to them when we need them:

void swap()
{
 vpo = 240 - vpo; /* visual page offset */
 vpb = vpo + 239; /* visual page bottom */
 hpo = 240 - hpo; /* hidden page offset */
 hpb = hpo + 239; /* hidden page bottom */

 /* set the origin to the visual page */
 fg_pan(screen_orgx,screen_orgy+vpo);
}

After the swap() function updates the variables, it calls fg_pan() to do the page flip.

[2] Horizontal Scrolling
Page 0 and page 1 will almost always be very similar. Most of the time, they will contain
the same tiles. There are 15 rows of 22 tiles on page 0, and the same 15 rows of 22 tiles
on page 1. The only time when the two pages do not match is when one of the
coordinates scrolls outside of the panning limits.

Let's imagine our character is walking east. We want to scroll the screen to the right,
continuously and slowly. We will increment the x coordinate one pixel each frame:

Action Arcade Adventure Set Chapter 5 8

screen_orgx = 16;
screen_orgy = 16;
do
{
 fg_pan(screen_orgx,screen_orgy+vpo)
 screen_orgx++;
}

while (screen_orgx < 32);

We are now at the limit of our panning area. We can't continue on like this. We have to do
something! But what?

What we need to do is rebuild the hidden page with all the tiles shifted to the left by one
column, and then recalculate the x coordinate to match the new set of tiles.

Suppose we number our columns from 0 to 21, as shown in Figure 5.8. To scroll the
picture to the right, we simply need to shift all the tiles of columns to the left. It's that
easy. All we need to do is copy the tiles from the last 21 columns of the visual page to the
first 21 columns of the hidden page, like this:

fg_transfer(16,251,vpo,vpb, 0,hpb, 0,0);

After the transfer, the columns on the hidden page look like Figure 5.9.

Figure 5.8 Columns numbered from 0 to 21.

Figure 5.9 22 columns of tiles on the hidden page.

The large rectangular area from 16 to 351 on the visual page has been copied to the area
from 0 to 336 on the hidden page. Column 0 is gone; it's been covered up by column 1,
and all the other columns have been shifted to the left. Column 21 is duplicated. We don't
really need two copies of column 21 on the hidden page; what we need is the next
column of tiles (column 22). We call the appropriate function to blit the tiles to column
22.

Now our hidden page looks like Figure 5.10.

Action Arcade Adventure Set Chapter 5 9

Figure 5.10 Updating the hidden page.

This is exactly what we wanted. But we are not quite ready to complete the frame yet. We
need to adjust the x coordinate before we do the page flip. Since all the visual elements of
the screen have effectively been moved 16 pixels to the left, we need to decrement the x
coordinate by 16 as well:

screen_orgx -= 16;
fg_pan(screen_orgx,screen_orgy+yoffset);

The frame is complete. We have moved one more pixel to the right; now we can keep
scrolling right and we won't have to do redraw the screen1 again for 15 more pixels.

The scrolling technique will be most useful if we write a function to handle various cases.
The scroll_right() function in the level editor source file, LEVEL.C, looks like this:

int scroll_right(int npixels)
{
 register int i;

 /* no tiles need to be redrawn */
 if (screen_orgx <= 32-npixels)
 {
 screen_orgx+=npixels;
 fg_pan(screen_orgx,screen_orgy);
 }

 /* redraw one column of tiles and do a page swap */
 else if (tile_orgx < ncols - 22)
 {
 tile_orgx++;
 screen_orgx-=(16-npixels);
 fg_transfer(16,351,vpo,vpo+239,0,hpo+239,0,0);
 swap();
 for(i = 0; i< 15; i++)
 put_tile(21,i);
 }

 /* can't scroll right */
 else
 return(ERR);

 return(OK);

Action Arcade Adventure Set Chapter 5 10

}

The scroll_right() function allows us to pass a variable number of pixels and handles
three cases:

The new screen origin is within the panning limits.
The screen origin is outside the panning limits, but the tile origin is still within the

limits of tile space.
Both the screen origin and the tile origin have moved as far in this direction as

they can.

[2] Tile Space
Usually, our scrolling background is going to have more than 22 columns and 15 rows. In
fact, it will have many, many more. We need to start thinking in tile space. Tile space is a
coordinate system based on rows and columns of tiles. Since each tile is 16x16 pixels,
conversions from tile space to pixels usually involve subtracting the origin and
multiplying by 16. Similarly, converting from pixels coordinates in video memory to tile
space will require dividing by 16 and adding the origin.

Just as the visible screen floats in the visual page, the visual page floats within the tile
space. This concept is illustrated in Figure 5.11.

Figure 5.11 The visible page floats within the available tile space.

Tile space is a huge map, stretching 240 tiles long and 200 tiles high. The visual page can
be located anywhere in this tile space, occupying only 22 columns and 15 rows at a time.
The shaded part in the Figure 5.11 represents the visual page. Remember, the screen is
smaller than the visual page by about two tiles in the x and y directions. So as the screen
floats freely in the visual page, and the visual page floats in the tile space, and the illusion
of scrolling is accomplished.

Just as the origin of the screen must stay within the panning limits, the origin of the visual
page must stay within some limits too. We can not let the visual page scroll off the edge
of the tile map in any direction. The smallest value for tile_orgx is 0, and the largest
value is MAXCOLS - 22. Similarly, the smallest value for tile_orgy is 0 and the largest
value is MAXROWS - 15. We will test for these limits in our scrolling function. If we
meet or exceed the tile limits, then we have reached the end of the world and are unable
to scroll any further.

[2] The Tile Area
Now let's look at how we built those columns of tiles. Each column has 16 tiles. But
where do the tiles come from? The best place to store tiles is in some area of video
memory where nothing else is happening. Since we have already defined areas for page 0

Action Arcade Adventure Set Chapter 5 11

and page 1, let's look at Figure 5.12 to see what we have left.

Figure 5.12 Video memory.

The shaded area is as good a place as any to put the tiles. We'll allocate an area 320x200
pixels for this function. Let's call this the tile area; we'll plan on not using this for
anything else.

Let's take a closer look at the tile area. As you can see in Figure 5.13, there are 240
unique tiles, numbered from 0 to 239: Their location in the tile area determines their
number. Tile number 0 is in the upper-left corner, tile number 239 is in the lower-right
corner, and all the other tiles are in between.

Figure 5.13 A closer look at the tile area.
All the backgrounds in our game are constructed from some combination of these tiles.
The tiles are simply copied from the tile area to the hidden page using a straight video
memory-to-video memory blit. The function to copy the tile from the tile area to the
hidden page looks like this:

void put_tile(int column, int row)
{
 int tile_num;
 int x,y;
 int x1,x2,y1,y2;

 /* get the tile information from the tile map */
 tile_num = (int)level_map[column+tile_orgx][row+tile_orgy];

 /* calculate the destination coordinates */
 x = column * 16;
 y = row * 16 + 15 + hpo;

 /* calculate the source coordinates */
 x1 = (tile_num%20)*16;
 x2 = x1+15;
 y1 = (tile_num/20)*16 + tpo;
 y2 = y1+15;

 /* copy the tile */
 fg_transfer(x1,x2,y1,y2,x,y,0,0);
}

This function calculates the tile number based on the row and column destination, then it
Action Arcade Adventure Set Chapter 5 12

finds the location of the tile number in the tile area. It also calculates the destination in
pixels. Finally, the rectangular area is copied from the tile area to the correct position on
the hidden page.

This function also introduces some new global variables, and before we go any further,
let's define them. First, tile_orgx is the x origin in tile space. That is, it is the number of
the first column. In our previous example, before the screen scrolled, tile_orgx was 0.
After the scroll, it was 1. Similarly, tile_orgy defines the row coordinate at the top of the
page, also called the y origin.

The put_tile() function makes it very easy to define another useful function,
redraw_screen(). The redraw_screen() function builds a whole screen, one tile at a
time:

void redraw_screen (void)
{
 register int i, j;

 for (i=0; i<22; i++)
 {
 for (j=0; j<15; j++)
 {
 put_tile (i,j);
 }
 }
}

[2] The Level Map
The tile information that defines the background is stored in the array level_map. This is
a two dimensional array defined like this:

unsigned char far level_map[MAXCOLS][MAXROWS];

We can use this array to define some very large levels. Suppose we want our level map to
be 240 tiles wide and 240 tiles high. This will give us a total of 48,000 tiles, as shown
here:

 240 columns
x 200 rows

48,000 tiles

It is easy to see why we use a char (byte) array instead of an integer array. If this was an
Action Arcade Adventure Set Chapter 5 13

integer array instead, we would quickly overflow a 64K segment boundary. However,
defining this as an unsigned char array means each tile must have a value less than or
equal to 254. This isn't a problem because, as illustrated earlier, we have exactly 240
unique tiles. That was certainly good planning! Isn't it nice how this works out?

240 columns and 200 rows actually defines a huge area. Remember, each tile has 256
pixels (16x16). Or in other words:

 240 columns x 16 = 3840 pixels horizontally
x 200 rows x 16 = 3200 pixels vertically
------------- -----
48,000 tiles x256 = 12,288,000 pixels total

That's over 12 million pixels! Yet, amazingly, we're keeping all this information in one
48K array, as well as within the tile area in video memory.

The way we can do this, of course, is by duplicating a lot of information. If our game
calls for 20 windows, what we'll actually have is one window repeated 20 times. Small
trees and big trees are composed of the same branches organized in different ways. One
blue tile can be repeated infinitely for an apparently endless sky. Think of your level map
as the whole world. The rows and columns are the coordinate system that keep track of it,
and the tiles themselves define what it looks like.

[2] Vertical Scrolling
Vertical scrolling is accomplished in approximately the same way as horizontal scrolling.
The y coordinate is incremented (or decremented) until it is outside the panning limits.
Then a large area, missing a row either from the top or the bottom, is copied from the
visual page to the hidden page. The missing row is added at the top or bottom as needed,
and the page flip completes the frame. Here is the function for the scrolling part of the
frame:

int scroll_up(int npixels)
{
 register int i;

 /* no tiles need to be redrawn */

 if (screen_orgy >= npixels)
 {
 screen_orgy-=npixels;
 fg_pan(screen_orgx,screen_orgy);
 }

Action Arcade Adventure Set Chapter 5 14

 /* redraw one row of tiles and do a page swap */

 else if (tile_orgy > 0)
 {
 tile_orgy--;
 screen_orgy+=(16-npixels);
 fg_transfer(0,351,vpo,223+vpo,0,hpo+239,0,0);
 for(i = 0; i< 22; i++)
 put_tile(i,0);
 swap();
 }

 else /* can't scroll up */
 return(-1);
 return(OK);
}

[1] Getting a Clear Picture
You should now have a good grasp of how scrolling works. Once you can visualize the
various coordinate systems and the page flipping and scrolling techniques, the other
functions will fall easily into place. Be sure you have a clear understanding of the
concepts discussed in this chapter before continuing. As we said before, this chapter is the
foundation for the rest of our game engine, and is at the very heart of the side-scrolling
arcade game technology.

In case you were wondering about whether I am currently ahead of Ted in finding uses
for the technology he develops, I am afraid I am not. He is most decidedly ahead of me.
He has developed Fastgraph to run in 32-bit flat model protected mode and he wants me
to write code to make use of virtual bitmaps many megabytes in size. Talk about raw
power! I haven't the foggiest idea what to do with all this new stuff. But something will
come to me . . . eventually.

Action Arcade Adventure Set Chapter 5 15

